jueves, 1 de octubre de 2009

PROPIEDADES DE LOS RAYOS X



Los rayos X afectan a una emulsión fotográfica del mismo modo que lo hace la luz . La absorción de rayos X por una sustancia depende de su densidad y masa atómica. Cuanto menor sea la masa atómica del material, más transparente será a los rayos X de una longitud de onda determinada. Cuando se irradia el cuerpo humano con rayos X, los huesos compuestos de elementos con mayor masa atómica que los tejidos circundantes— absorben la radiación con más eficacia, por lo que producen sombras más oscuras sobre una placa fotográfica. En la actualidad se utiliza radiación de neutrones para algunos tipos de radiografía, y los resultados son casi los inversos. Los objetos que producen sombras oscuras en una imagen de rayos X aparecen casi siempre claros en una radiografía de neutrones.

Fluorescencia

Los rayos X también producen fluorescencia en determinados materiales, como el platinocianuro de bario o el sulfuro de cinc. Si se sustituye la película fotográfica por uno de estos materiales fluorescentes, puede observarse directamente la estructura interna de objetos opacos. Esta técnica se conoce como fluoroscopia. Véase Fluoroscopio.

Ionización


Otra característica importante de los rayos X es su poder de ionización, que depende de su longitud de onda. La capacidad de ionización de los rayos X monocromáticos es directamente proporcional a su energía. Esta propiedad proporciona un método para medir la energía de los rayos X. Cuando se hacen pasar rayos X por una cámara de ionización, se produce una corriente eléctrica proporcional a la energía del haz incidente. Además de la cámara de ionización, otros aparatos más sensibles como el contador Geiger o el contador de centelleo también miden la energía de los rayos X a partir de la ionización que provocan. Por otra parte, la capacidad ionizante de los rayos X hace que su trayectoria pueda visualizarse en una cámara de niebla o de burbujas.

Difracción de rayos X


Los rayos X pueden difractarse al atravesar un cristal, o ser dispersados por él, ya que el cristal está formado por redes de átomos regulares que actúan como redes de difracción muy finas. Los diagramas de interferencia resultantes pueden fotografiarse y analizarse para determinar la longitud de onda de los rayos X incidentes o la distancia entre los átomos del cristal, según cuál de ambos datos se desconozca

Los rayos X también pueden difractarse mediante redes de difracción rayadas si su espaciado es aproximadamente igual a la longitud de onda de los rayos X.

No hay comentarios:

Publicar un comentario